Replace "immersive AR" with "AR headset"
This commit is contained in:
@@ -12,8 +12,8 @@ We found no statistically significant differences when comparing the considered
|
||||
|
||||
All visual hand augmentations showed \response{Grip Apertures} close to the size of the virtual cube, except for the \level{None} rendering (\figref{results/Grasp-GripAperture}), with which participants applied stronger grasps, \ie less distance between the fingertips.
|
||||
Having no visual hand augmentation, but only the reaction of the cube to the interaction as feedback, made participants less confident in their grip.
|
||||
This result contrasts with the wrongly estimated grip apertures observed by \textcite{al-kalbani2016analysis} in an exocentric VST-AR setup.
|
||||
Also, while some participants found the absence of visual hand augmentation more natural, many of them commented on the importance of having feedback on the tracking of their hands, as observed by \textcite{xiao2018mrtouch} in a similar immersive OST-AR setup.
|
||||
This result contrasts with the wrongly estimated grip apertures observed by \textcite{al-kalbani2016analysis} in an exocentric \VST-\AR setup.
|
||||
Also, while some participants found the absence of visual hand augmentation more natural, many of them commented on the importance of having feedback on the tracking of their hands, as observed by \textcite{xiao2018mrtouch} with an \OST-\AR headset.
|
||||
|
||||
Yet, participants' opinions of the visual hand augmentations were mixed on many questions, except for the \level{Occlusion} one, which was perceived less effective than more \enquote{complete} visual hands such as \level{Contour}, \level{Skeleton}, and \level{Mesh} hands (\figref{results_questions}).
|
||||
However, due to the latency of the hand tracking and the visual hand reacting to the cube, almost all participants thought that the \level{Occlusion} rendering to be a \enquote{shadow} of the real hand on the cube.
|
||||
@@ -24,7 +24,7 @@ while others found that it gave them a better sense of the contact points and im
|
||||
This result is consistent with \textcite{saito2021contact}, who found that displaying the points of contacts was beneficial for grasping a virtual object over an opaque visual hand overlay.
|
||||
|
||||
To summarize, when employing a visual feedback of the virtual hand overlaying the real hand, participants were more performant and confident in manipulating virtual objects with bare hands in \AR.
|
||||
These results contrast with similar manipulation studies, but in non-immersive, on-screen \AR, where the presence of a visual hand augmentation was found by participants to improve the usability of the interaction, but not their performance \cite{blaga2017usability,maisto2017evaluation,meli2018combining}.
|
||||
These results contrast with similar manipulation studies, but in on-screen \AR, where the presence of a visual hand augmentation was found by participants to improve the usability of the interaction, but not their performance \cite{blaga2017usability,maisto2017evaluation,meli2018combining}.
|
||||
Our results show the most effective visual hand augmentation to be the \level{Skeleton} one.
|
||||
Participants appreciated that it provided a detailed and precise view of the tracking of the real hand, without hiding or masking it.
|
||||
Although the \level{Contour} and \level{Mesh} hand renderings were also highly rated, some participants felt that they were too visible and masked the real hand.
|
||||
|
||||
Reference in New Issue
Block a user