tangible -> real

This commit is contained in:
2024-10-12 15:24:56 +02:00
parent 000a0a0fc5
commit f624ed5d44
16 changed files with 91 additions and 84 deletions

View File

@@ -2,8 +2,8 @@
\label{conclusion}
In this chapter, we studied how the perception of wearable haptic augmented textures is affected by the visual virtuality of the hand and the environment, being either real, augmented or virtual.
Using the wearable visuo-haptic augmentation system presented in \chapref{vhar_system}, we augmented the perceived roughness of tangible surfaces with virtual vibrotactile textures rendered on the finger.
%we rendered virtual vibrotactile patterned textures on the voice-coil worn on the middle-phalanx of the finger to augment the roughness perception of the tangible surface being touched.
Using the wearable visuo-haptic augmentation system presented in \chapref{vhar_system}, we augmented the perceived roughness of real surfaces with virtual vibrotactile textures rendered on the finger.
%we rendered virtual vibrotactile patterned textures on the voice-coil worn on the middle-phalanx of the finger to augment the roughness perception of the real surface being touched.
With an immersive \AR headset, that could be switched to a \VR only view, we considered three visual rendering conditions: (1) without visual augmentation, (2) with a realistic virtual hand rendering in \AR, and (3) with the same virtual hand in \VR.
We then evaluated the perceived roughness augmentation in these three visual conditions with a psychophysical user study involving 20 participants and extensive questionnaires.
@@ -17,6 +17,6 @@ This study suggests that attention should be paid to the respective latencies of
Latencies should be measured \cite{friston2014measuring}, minimized to an acceptable level for users and kept synchronised with each other \cite{diluca2019perceptual}.
It seems also that the visual aspect of the hand or the environment on itself has little effect on the perception of haptic feedback, but the degree of visual reality-virtuality can affect the asynchrony sensation of the latencies, even though they remain identical.
When designing for wearable haptics or integrating it into \AR/\VR, it seems important to test its perception in real, augmented and virtual environments.
%With a better understanding of how visual factors influence the perception of haptically augmented tangible objects, the many wearable haptic systems that already exist but have not yet been fully explored with \AR can be better applied and new visuo-haptic renderings adapted to \AR can be designed.
%With a better understanding of how visual factors influence the perception of haptically augmented real objects, the many wearable haptic systems that already exist but have not yet been fully explored with \AR can be better applied and new visuo-haptic renderings adapted to \AR can be designed.
%Finally, a visual hand representation in OST-\AR together with wearable haptics should be avoided until acceptable tracking latencies \are achieved, as was also observed for \VO interaction with the bare hand \cite{normand2024visuohaptic}.