Use \autocite

This commit is contained in:
2024-06-26 19:02:04 +02:00
parent 74f2f271bc
commit e34039577b
12 changed files with 125 additions and 125 deletions

View File

@@ -28,7 +28,7 @@ The user study aimed to investigate the effect of visual hand rendering in AR or
%
In a two-alternative forced choice (2AFC) task, participants compared the roughness of different tactile texture augmentations in three visual rendering conditions: without any visual augmentation (see \figref{renderings}, \level{Real}), in AR with a realistic virtual hand superimposed on the real hand (see \figref{renderings}, \level{Mixed}), and in VR with the same virtual hand as an avatar (see \figref{renderings}, \level{Virtual}).
%
In order not to influence the perception, as vision is an important source of information and influence for the perception of texture~\cite{bergmanntiest2007haptic,yanagisawa2015effects,normand2024augmenting,vardar2019fingertip}, the touched surface was visually a uniform white; thus only the visual aspect of the hand and the surrounding environment is changed.
In order not to influence the perception, as vision is an important source of information and influence for the perception of texture~\autocite{bergmanntiest2007haptic,yanagisawa2015effects,normand2024augmenting,vardar2019fingertip}, the touched surface was visually a uniform white; thus only the visual aspect of the hand and the surrounding environment is changed.
\subsection{Participants}
@@ -68,7 +68,7 @@ The virtual hand model was a gender-neutral human right hand with realistic skin
%
Its size was adjusted to match the real hand of the participants before the experiment.
%
%An OST-AR headset (Microsoft HoloLens~2) was chosen over a VST-AR headset because the former only adds virtual content to the real environment, while the latter streams a real-time video capture of the real environment, and one of our objectives was to directly compare a virtual environment replicating a real one, not to a video feed that introduces many other visual limitations~\cite{macedo2023occlusion}.
%An OST-AR headset (Microsoft HoloLens~2) was chosen over a VST-AR headset because the former only adds virtual content to the real environment, while the latter streams a real-time video capture of the real environment, and one of our objectives was to directly compare a virtual environment replicating a real one, not to a video feed that introduces many other visual limitations~\autocite{macedo2023occlusion}.
%
The visual rendering of the virtual hand and environment is described in \secref{xr_perception:virtual_real_alignment}.
%
@@ -90,7 +90,7 @@ In the \level{Mixed} and \level{Real} conditions, the mask had two additional ho
%
%The position of the finger relative to the sheet was estimated using a webcam placed on top of the box (StreamCam, Logitech) and the OpenCV library by tracking a \qty{2}{\cm} square fiducial marker (AprilTag) glued to top of the vibrotactile actuator.
%
%The total texture latency was measured to \qty{36 \pm 4}{\ms}, as a result of latency in image acquisition \qty{16 \pm 1}{\ms}, fiducial marker detection \qty{2 \pm 1}{\ms}, audio sampling \qty{3 \pm 1}{\ms}, and the vibrotactile actuator latency (\qty{15}{\ms}, as specified by the manufacturer\footnotemark[1]), and was below the \qty{60}{\ms} threshold for vibrotactile feedback \cite{okamoto2009detectability}.
%The total texture latency was measured to \qty{36 \pm 4}{\ms}, as a result of latency in image acquisition \qty{16 \pm 1}{\ms}, fiducial marker detection \qty{2 \pm 1}{\ms}, audio sampling \qty{3 \pm 1}{\ms}, and the vibrotactile actuator latency (\qty{15}{\ms}, as specified by the manufacturer\footnotemark[1]), and was below the \qty{60}{\ms} threshold for vibrotactile feedback \autocite{okamoto2009detectability}.
%
%The virtual hand followed the position of the fiducial marker with a slightly higher latency due to the network synchronization \qty{4 \pm 1}{\ms} between the computer and the HoloLens~2.