Style figures in visual-hand chapter
This commit is contained in:
@@ -3,14 +3,14 @@
|
||||
|
||||
We evaluated six visual hand renderings, as described in \secref{hands}, displayed on top of the real hand, in two virtual object manipulation tasks in \AR.
|
||||
|
||||
During the \level{Push} task, the \level{Skeleton} hand rendering was the fastest (\figref{results/Push-CompletionTime-Hand-Overall-Means}), as participants employed fewer and longer contacts to adjust the cube inside the target volume (\figref{results/Push-ContactsCount-Hand-Overall-Means} and \figref{results/Push-MeanContactTime-Hand-Overall-Means}).
|
||||
During the \level{Push} task, the \level{Skeleton} hand rendering was the fastest (\figref{results/Push-CompletionTime}), as participants employed fewer and longer contacts to adjust the cube inside the target volume (\figref{results/Push-ContactsCount} and \figref{results/Push-MeanContactTime}).
|
||||
Participants consistently used few and continuous contacts for all visual hand renderings (Fig. 3b), with only less than ten trials, carried out by two participants, quickly completed with multiple discrete touches.
|
||||
However, during the \level{Grasp} task, despite no difference in \response{Completion Time}, providing no visible hand rendering (\level{None} and \level{Occlusion} renderings) led to more failed grasps or cube drops (\figref{results/Grasp-CompletionTime-Hand-Overall-Means} and \figref{results/Grasp-MeanContactTime-Hand-Overall-Means}).
|
||||
However, during the \level{Grasp} task, despite no difference in \response{Completion Time}, providing no visible hand rendering (\level{None} and \level{Occlusion} renderings) led to more failed grasps or cube drops (\figref{results/Grasp-ContactsCount} and \figref{results/Grasp-MeanContactTime}).
|
||||
Indeed, participants found the \level{None} and \level{Occlusion} renderings less effective (\figref{results/Ranks-Grasp}) and less precise (\figref{results_questions}).
|
||||
To understand whether the participants' previous experience might have played a role, we also carried out an additional statistical analysis considering \VR experience as an additional between-subjects factor, \ie \VR novices vs. \VR experts (\enquote{I use it every week}, see \secref{participants}).
|
||||
We found no statistically significant differences when comparing the considered metrics between \VR novices and experts.
|
||||
|
||||
All visual hand renderings showed \response{Grip Apertures} close to the size of the virtual cube, except for the \level{None} rendering (\figref{results/Grasp-GripAperture-Hand-Overall-Means}), with which participants applied stronger grasps, \ie less distance between the fingertips.
|
||||
All visual hand renderings showed \response{Grip Apertures} close to the size of the virtual cube, except for the \level{None} rendering (\figref{results/Grasp-GripAperture}), with which participants applied stronger grasps, \ie less distance between the fingertips.
|
||||
Having no visual hand rendering, but only the reaction of the cube to the interaction as feedback, made participants less confident in their grip.
|
||||
This result contrasts with the wrongly estimated grip apertures observed by \textcite{al-kalbani2016analysis} in an exocentric VST-AR setup.
|
||||
Also, while some participants found the absence of visual hand rendering more natural, many of them commented on the importance of having feedback on the tracking of their hands, as observed by \textcite{xiao2018mrtouch} in a similar immersive OST-AR setup.
|
||||
|
||||
Reference in New Issue
Block a user