Update xr-perception chapter
This commit is contained in:
@@ -21,9 +21,9 @@ A \GLMM was adjusted to the \response{Texture Choice} in the \TIFC vibrotactile
|
||||
%
|
||||
The \PSEs (\figref{results/trial_pses}) and \JNDs (\figref{results/trial_jnds}) for each visual rendering and their respective differences were estimated from the model, along with their corresponding \percent{95} \CI, using a non-parametric bootstrap procedure (1000 samples).
|
||||
%
|
||||
A \PSE represents the estimated amplitude difference at which the comparison texture was perceived as rougher than the reference texture 50\% of the time. %, \ie it is the accuracy of participants in discriminating vibrotactile roughness.
|
||||
The \PSE represents the estimated amplitude difference at which the comparison texture was perceived as rougher than the reference texture \percent{50} of the time. %, \ie it is the accuracy of participants in discriminating vibrotactile roughness.
|
||||
%
|
||||
A \level{Real} rendering had the highest \PSE (\percent{7.9} \ci{1.2}{4.1}) and was statistically significantly different from the \level{Mixed} rendering (\percent{1.9} \ci{-2.4}{6.1}) and from the \level{Virtual} rendering (\percent{5.1} \ci{2.4}{7.6}).
|
||||
The \level{Real} rendering had the highest \PSE (\percent{7.9} \ci{1.2}{4.1}) and was statistically significantly different from the \level{Mixed} rendering (\percent{1.9} \ci{-2.4}{6.1}) and from the \level{Virtual} rendering (\percent{5.1} \ci{2.4}{7.6}).
|
||||
%
|
||||
The \JND represents the estimated minimum amplitude difference between the comparison and reference textures that participants could perceive,
|
||||
% \ie the sensitivity to vibrotactile roughness differences,
|
||||
@@ -50,22 +50,24 @@ All pairwise differences were statistically significant.
|
||||
\subsubsection{Response Time}
|
||||
\label{response_time}
|
||||
|
||||
A \LMM \ANOVA with by-participant random slopes for \factor{Visual Rendering}, and a log transformation (as \response{Response Time} measures were gamma distributed) indicated a statistically significant effects on \response{Response Time} of \factor{Visual Rendering} (\anova{2}{18}{6.2}, \p{0.009}, see \figref{results/trial_response_times}).
|
||||
A \LMM \ANOVA with by-participant random slopes for \factor{Visual Rendering}, and a log transformation (as \response{Response Time} measures were gamma distributed) indicated a statistically significant effect on \response{Response Time} of \factor{Visual Rendering} (\anova{2}{18}{6.2}, \p{0.009}, \figref{results/trial_response_times}).
|
||||
%
|
||||
Participants took longer on average to respond with the \level{Virtual} rendering (\geomean{1.65}{s} \ci{1.59}{1.72}) than with the \level{Real} rendering (\geomean{1.38}{s} \ci{1.32}{1.43}), which is the only statistically significant difference (\ttest{19}{0.3}, \p{0.005}).
|
||||
Reported response times are \GM.
|
||||
%
|
||||
The \level{Mixed} rendering was in between (\geomean{1.56}{s} \ci{1.49}{1.63}).
|
||||
Participants took longer on average to respond with the \level{Virtual} rendering (\geomean{1.65}{\s} \ci{1.59}{1.72}) than with the \level{Real} rendering (\geomean{1.38}{\s} \ci{1.32}{1.43}), which is the only statistically significant difference (\ttest{19}{0.3}, \p{0.005}).
|
||||
%
|
||||
The \level{Mixed} rendering was in between (\geomean{1.56}{\s} \ci{1.49}{1.63}).
|
||||
|
||||
\subsubsection{Finger Position and Speed}
|
||||
\label{finger_position_speed}
|
||||
|
||||
The frames analysed were those in which the participants actively touched the comparison textures with a finger speed greater than \SI{1}{\mm\per\second}.
|
||||
%
|
||||
A \LMM \ANOVA with by-participant random slopes for \factor{Visual Rendering} indicated only one statistically significant effect on the total distance traveled by the finger in a trial of \factor{Visual Rendering} (\anova{2}{18}{3.9}, \p{0.04}, see \figref{results/trial_distances}).
|
||||
A \LMM \ANOVA with by-participant random slopes for \factor{Visual Rendering} indicated only one statistically significant effect on the total distance traveled by the finger in a trial of \factor{Visual Rendering} (\anova{2}{18}{3.9}, \p{0.04}, \figref{results/trial_distances}).
|
||||
%
|
||||
On average, participants explored a larger distance with the \level{Real} rendering (\geomean{20.0}{\cm} \ci{19.4}{20.7}) than with \level{Virtual} rendering (\geomean{16.5}{\cm} \ci{15.8}{17.1}), which is the only statistically significant difference (\ttest{19}{1.2}, \p{0.03}), with the \level{Mixed} rendering (\geomean{17.4}{\cm} \ci{16.8}{18.0}) in between.
|
||||
%
|
||||
Another \LMM \ANOVA with by-trial and by-participant random intercepts but no random slopes indicated only one statistically significant effect on \response{Finger Speed} of \factor{Visual Rendering} (\anova{2}{2142}{2.0}, \pinf{0.001}, see \figref{results/trial_speeds}).
|
||||
Another \LMM \ANOVA with by-trial and by-participant random intercepts but no random slopes indicated only one statistically significant effect on \response{Finger Speed} of \factor{Visual Rendering} (\anova{2}{2142}{2.0}, \pinf{0.001}, \figref{results/trial_speeds}).
|
||||
%
|
||||
On average, the textures were explored with the highest speed with the \level{Real} rendering (\geomean{5.12}{\cm\per\second} \ci{5.08}{5.17}), the lowest with the \level{Virtual} rendering (\geomean{4.40}{\cm\per\second} \ci{4.35}{4.45}), and the \level{Mixed} rendering (\geomean{4.67}{\cm\per\second} \ci{4.63}{4.71}) in between.
|
||||
%
|
||||
@@ -86,7 +88,7 @@ All pairwise differences were statistically significant: \level{Real} \vs \level
|
||||
\end{subfigs}
|
||||
|
||||
\subsection{Questionnaires}
|
||||
\label{questions}
|
||||
\label{results_questions}
|
||||
|
||||
%\figref{results/question_heatmaps} shows the median and interquartile range (IQR) ratings to the questions in \tabref{questions} and to the NASA-TLX questionnaire.
|
||||
%
|
||||
@@ -105,11 +107,11 @@ Overall, participants' sense of control over the virtual hand was very high (\re
|
||||
%
|
||||
The textures were also overall found to be very much caused by the finger movements (\response{Texture Agency}, \num{4.5 +- 1.0}) with a very low perceived latency (\response{Texture Latency}, \num{1.6 +- 0.8}), and to be quite realistic (\response{Texture Realism}, \num{3.6 +- 0.9}) and quite plausible (\response{Texture Plausibility}, \num{3.6 +- 1.0}).
|
||||
%
|
||||
Participants were mixed between feeling the vibrations on the surface or on the top of their finger (\response{Vibration Location}, \num{3.9 +- 1.7}); the distribution of scores was split between the two poles of the scale with \level{Real} and \level{Mixed} renderings (42.5\% more on surface or on finger top, 15\% neutral), but there was a trend towards the top of the finger in \VR renderings (65\% \vs 25\% more on surface and 10\% neutral), but this difference was not statistically significant neither.
|
||||
Participants were mixed between feeling the vibrations on the surface or on the top of their finger (\response{Vibration Location}, \num{3.9 +- 1.7}); the distribution of scores was split between the two poles of the scale with \level{Real} and \level{Mixed} renderings (\percent{42.5} more on surface or on finger top, \percent{15} neutral), but there was a trend towards the top of the finger in VR renderings (\percent{65} \vs \percent{25} more on surface and \percent{10} neutral), but this difference was not statistically significant neither.
|
||||
%
|
||||
The vibrations were felt a slightly weak overall (\response{Vibration Strength}, \num{4.2 +- 1.1}), and the vibrotactile device was perceived as neither distracting (\response{Device Distraction}, \num{1.2 +- 0.4}) nor uncomfortable (\response{Device Discomfort}, \num{1.3 +- 0.6}).
|
||||
%
|
||||
%Finally, the overall workload (mean NASA-TLX score) was low (\num{21 +- 14}), with no statistically significant differences found between the visual renderings for any of the subscales or the overall score.
|
||||
Finally, the overall workload (mean NASA-TLX score) was low (\num{21 +- 14}), with no statistically significant differences found between the visual renderings for any of the subscales or the overall score.
|
||||
|
||||
%\figwide{results/question_heatmaps}{%
|
||||
%
|
||||
|
||||
Reference in New Issue
Block a user