Résumé
This commit is contained in:
@@ -37,7 +37,7 @@ The system consists of three main components: the pose estimation of the tracked
|
||||
|
||||
A \qty{2}{\cm} AprilTag fiducial marker \cite{wang2016apriltag} is glued to the top of the actuator (\figref{device}) to track the finger pose with a camera (StreamCam, Logitech) which is placed above the experimental setup and capturing \qtyproduct{1280 x 720}{px} images at \qty{60}{\hertz} (\figref{apparatus}).
|
||||
Other markers are placed on the real surfaces to augment (\figref{setup}) to estimate the relative position of the finger with respect to the surfaces.
|
||||
Contrary to similar work using vision-based tracking allows both to free the hand movements and to augment any real surface.
|
||||
Contrary to similar work, using vision-based tracking allows both to free the hand movements and to augment any real surface.
|
||||
A camera external to the \AR headset with a marker-based technique is employed to provide accurate and robust tracking with a constant view of the markers \cite{marchand2016pose}.
|
||||
We denote ${}^c\mathbf{T}_i$, $i=1..n$ the homogenous transformation matrix that defines the position and rotation of the $i$-th marker out of the $n$ defined markers in the camera frame $\mathcal{F}_c$, \eg the finger pose ${}^c\mathbf{T}_f$ and the texture pose ${}^c\mathbf{T}_t$.
|
||||
|
||||
|
||||
@@ -5,7 +5,7 @@ Most of the haptic augmentations of real surfaces using with wearable haptic dev
|
||||
Still, it is known that the visual rendering of an object can influence the perception of its haptic properties (\secref[related_work]{visual_haptic_influence}), and that the perception of same haptic force-feedback or vibrotactile rendering can differ between \AR and \VR, probably due to difference in perceived simultaneity between visual and haptic stimuli (\secref[related_work]{ar_vr_haptic}).
|
||||
Indeed, in \AR, the user can see their own hand touching, the haptic device worn and the \RE, while in \VR they are hidden by the \VE.
|
||||
|
||||
In this chapter, we investigate the \textbf{role of the visual virtuality} of the hand (real or virtual) and its environment (\AR or \VR) on the perception of a \textbf{real surface whose haptic roughness is augmented} with a wearable haptics. %voice-coil device worn on the finger.
|
||||
In this chapter, we investigate the \textbf{role of the visual feedback of the virtual hand and of the environment (real or virtual) on the perception of a real surface whose haptic roughness is augmented} with wearable vibrotactile haptics. %voice-coil device worn on the finger.
|
||||
To do so, we used the visuo-haptic system presented in \chapref{vhar_system} to render virtual vibrotactile patterned textures (\secref[related_work]{texture_rendering}) to augment the real surface being touched. % touched by the finger.% that can be directly touched with the bare finger.
|
||||
We evaluated, in \textbf{user study with psychophysical methods and extensive questionnaire}, the perceived roughness augmentation in three visual rendering conditions: \textbf{(1) without visual augmentation}, in \textbf{(2) \OST-\AR with a realistic virtual hand} rendering, and in \textbf{(3) \VR with the same virtual hand}.
|
||||
To control for the influence of the visual rendering, the real surface was not visually augmented and stayed the same in all conditions.
|
||||
|
||||
@@ -15,7 +15,7 @@ We hypothesised that this difference in perception was due to the \emph{perceive
|
||||
%We can outline recommendations for future \AR/\VR studies or applications using wearable haptics.
|
||||
This study suggests that attention should be paid to the respective latencies of the visual and haptic sensory feedbacks inherent in such systems and, more importantly, to \emph{the perception of their possible asynchrony}.
|
||||
Latencies should be measured \cite{friston2014measuring}, minimized to an acceptable level for users and kept synchronised with each other \cite{diluca2019perceptual}.
|
||||
It seems also that the visual aspect of the hand or the environment on itself has little effect on the perception of haptic feedback, but the degree of visual reality-virtuality can affect the asynchrony sensation of the latencies, even though they remain identical.
|
||||
It seems also that the visual aspect of the hand or the environment on itself has little effect on the perception of haptic feedback, but the degree of visual virtuality can affect the asynchrony perception of the latencies, even though the latencies remain identical.
|
||||
When designing for wearable haptics or integrating it into \AR/\VR, it seems important to test its perception in real, augmented and virtual environments.
|
||||
%With a better understanding of how visual factors influence the perception of haptically augmented real objects, the many wearable haptic systems that already exist but have not yet been fully explored with \AR can be better applied and new visuo-haptic renderings adapted to \AR can be designed.
|
||||
%Finally, a visual hand representation in OST-\AR together with wearable haptics should be avoided until acceptable tracking latencies \are achieved, as was also observed for virtual object interaction with the bare hand \cite{normand2024visuohaptic}.
|
||||
|
||||
Reference in New Issue
Block a user