Remove "see" before section or figure reference
This commit is contained in:
@@ -8,15 +8,15 @@
|
||||
|
||||
The results showed a difference in vibrotactile roughness perception between the three visual rendering conditions.
|
||||
%
|
||||
Given the estimated point of subjective equality (PSE), the textures in the \level{Real} rendering were on average perceived as \enquote{rougher} than in the \level{Virtual} (\percent{-2.8}) and \level{Mixed} (\percent{-6.0}) renderings (see \figref{results/trial_pses}).
|
||||
Given the estimated point of subjective equality (PSE), the textures in the \level{Real} rendering were on average perceived as \enquote{rougher} than in the \level{Virtual} (\percent{-2.8}) and \level{Mixed} (\percent{-6.0}) renderings (\figref{results/trial_pses}).
|
||||
%
|
||||
\textcite{gaffary2017ar} found a PSE difference in the same range between AR and VR for perceived stiffness, with the VR perceived as \enquote{stiffer} and the AR as \enquote{softer}.
|
||||
%
|
||||
%However, the difference between the \level{Virtual} and \level{Mixed} conditions was not significant.
|
||||
%
|
||||
Surprisingly, the PSE of the \level{Real} rendering was shifted to the right (to be "rougher", \percent{7.9}) compared to the reference texture, whereas the PSEs of the \level{Virtual} (\percent{5.1}) and \level{Mixed} (\percent{1.9}) renderings were closer to the reference texture, being perceived as \enquote{smoother} (see \figref{results/trial_predictions}).
|
||||
Surprisingly, the PSE of the \level{Real} rendering was shifted to the right (to be "rougher", \percent{7.9}) compared to the reference texture, whereas the PSEs of the \level{Virtual} (\percent{5.1}) and \level{Mixed} (\percent{1.9}) renderings were closer to the reference texture, being perceived as \enquote{smoother} (\figref{results/trial_predictions}).
|
||||
%
|
||||
The sensitivity of participants to roughness differences (just-noticeable differences, JND) also varied between all the visual renderings, with the \level{Real} rendering having the best JND (\percent{26}), followed by the \level{Virtual} (\percent{30}) and \level{Virtual} (\percent{33}) renderings (see \figref{results/trial_jnds}).
|
||||
The sensitivity of participants to roughness differences (just-noticeable differences, JND) also varied between all the visual renderings, with the \level{Real} rendering having the best JND (\percent{26}), followed by the \level{Virtual} (\percent{30}) and \level{Virtual} (\percent{33}) renderings (\figref{results/trial_jnds}).
|
||||
%
|
||||
These JND values are in line with and at the upper end of the range of previous studies~\cite{choi2013vibrotactile}, which may be due to the location of the actuator on the top of the middle phalanx of the finger, being less sensitive to vibration than the fingertip.
|
||||
%
|
||||
@@ -24,15 +24,15 @@ Thus, compared to no visual rendering (\level{Real}), the addition of a visual r
|
||||
|
||||
Differences in user behaviour were also observed between the visual renderings (but not between the haptic textures).
|
||||
%
|
||||
On average, participants responded faster (\percent{-16}), explored textures at a greater distance (\percent{+21}) and at a higher speed (\percent{+16}) without visual augmentation (\level{Real} rendering) than in VR (\level{Virtual} rendering) (see \figref{results_finger}).
|
||||
On average, participants responded faster (\percent{-16}), explored textures at a greater distance (\percent{+21}) and at a higher speed (\percent{+16}) without visual augmentation (\level{Real} rendering) than in VR (\level{Virtual} rendering) (\figref{results_finger}).
|
||||
%
|
||||
The \level{Mixed} rendering, displaying both the real and virtual hands, was always in between, with no significant difference from the other two renderings.
|
||||
%
|
||||
This suggests that touching a virtual vibrotactile texture on a tangible surface with a virtual hand in VR is different from touching it with one's own hand: users were more cautious or less confident in their exploration in VR.
|
||||
%
|
||||
This seems not due to the realism of the virtual hand or environment, nor the control of the virtual hand, that were all rated high to very high by the participants (see \secref{questions}) in both the \level{Mixed} and \level{Virtual} renderings.
|
||||
This seems not due to the realism of the virtual hand or environment, nor the control of the virtual hand, that were all rated high to very high by the participants (\secref{questions}) in both the \level{Mixed} and \level{Virtual} renderings.
|
||||
%
|
||||
Very interestingly, the evaluation of the vibrotactile device and textures was also the same between the visual rendering, with a very high sensation of control, a good realism and a very low perceived latency of the textures (see \secref{questions}).
|
||||
Very interestingly, the evaluation of the vibrotactile device and textures was also the same between the visual rendering, with a very high sensation of control, a good realism and a very low perceived latency of the textures (\secref{questions}).
|
||||
%
|
||||
However, the perceived latency of the virtual hand (\response{Hand Latency} question) seems to be related to the perceived roughness of the textures (with the PSEs).
|
||||
%
|
||||
@@ -40,7 +40,7 @@ The \level{Mixed} rendering had the lowest PSE and highest perceived latency, th
|
||||
|
||||
Our visuo-haptic augmentation system aimed to provide a coherent multimodal virtual rendering integrated with the real environment.
|
||||
%
|
||||
Yet, it involves different sensory interaction loops between the user's movements and the visuo-haptic feedback (see \figref{method/diagram}), which are subject to different latencies and may not be in synchronised with each other, or may even being inconsistent with other sensory modalities such as proprioception.
|
||||
Yet, it involves different sensory interaction loops between the user's movements and the visuo-haptic feedback (\figref{method/diagram}), which are subject to different latencies and may not be in synchronised with each other, or may even being inconsistent with other sensory modalities such as proprioception.
|
||||
%
|
||||
When a user runs their finger over a vibrotactile virtual texture, the haptic sensations and eventual display of the virtual hand lag behind the visual displacement and proprioceptive sensations of the real hand.
|
||||
%
|
||||
|
||||
Reference in New Issue
Block a user