Remove "see" before section or figure reference

This commit is contained in:
2024-09-16 12:57:05 +02:00
parent 8705affcc4
commit 3b66b69fa1
21 changed files with 145 additions and 133 deletions

View File

@@ -26,17 +26,17 @@ An increasing \emph{wearability} resulting in the loss of the system's kinesthet
\subfig{pacchierotti2017wearable_3}
\end{subfigs}
Haptic research comes from robotics and teleoperation, and historically led to the design of haptic systems that are \emph{grounded} to an external support in the environment, such as a table (see \figref{pacchierotti2017wearable_1}).
These are robotic arms whose end-effector is either held in the hand or worn on a finger and which simulate interactions with a \VE by providing kinesthetic forces and torques feedback (see \figref{pacchierotti2015cutaneous}).
Haptic research comes from robotics and teleoperation, and historically led to the design of haptic systems that are \emph{grounded} to an external support in the environment, such as a table (\figref{pacchierotti2017wearable_1}).
These are robotic arms whose end-effector is either held in the hand or worn on a finger and which simulate interactions with a \VE by providing kinesthetic forces and torques feedback (\figref{pacchierotti2015cutaneous}).
They provide high fidelity haptic feedback but are heavy, bulky and limited to small workspaces~\cite{culbertson2018haptics}.
More portable designs have been developed by moving the grounded part to the user's body.
The entire robotic system is thus mounted on the user, forming an exoskeleton capable of providing kinesthetic feedback to the finger, \eg in \figref{achibet2017flexifingers}.
However, it cannot constrain the movements of the wrist and the reaction force is transmitted to the user where the device is grounded (see \figref{pacchierotti2017wearable_2}).
However, it cannot constrain the movements of the wrist and the reaction force is transmitted to the user where the device is grounded (\figref{pacchierotti2017wearable_2}).
They are often heavy and bulky and cannot be considered wearable.
\textcite{pacchierotti2017wearable} defined that : \enquote{A wearable haptic interface should also be small, easy to carry, comfortable, and it should not impair the motion of the wearer}.
An approach is then to move the grounding point very close to the end-effector (see \figref{pacchierotti2017wearable_3}): the interface is limited to cutaneous haptic feedback, but its design is more compact, lightweight and comfortable, \eg in \figref{leonardis20173rsr}, and the system is wearable.
An approach is then to move the grounding point very close to the end-effector (\figref{pacchierotti2017wearable_3}): the interface is limited to cutaneous haptic feedback, but its design is more compact, lightweight and comfortable, \eg in \figref{leonardis20173rsr}, and the system is wearable.
Moreover, as detailed in \secref{object_properties}, cutaneous sensations are necessary and often sufficient for the perception of the haptic properties of an object explored with the hand, as also argued by \textcite{pacchierotti2017wearable}.
\begin{subfigs}{grounded_to_wearable}{
@@ -134,8 +134,8 @@ They are small, lightweight and can be placed directly on any part of the hand.
All vibrotactile actuators are based on the same principle: generating an oscillating motion from an electric current with a frequency and amplitude high enough to be perceived by cutaneous mechanoreceptors.
Several types of vibrotactile actuators are used in haptics, with different trade-offs between size, proposed \DoFs and application constraints:
\begin{itemize}
\item An \ERM is a \DC motor that rotates an off-center mass when a voltage or current is applied (see \figref{precisionmicrodrives_erm}). \ERMs are easy to control, inexpensive and can be encapsulated in a few millimeters cylinder or coin form factor. However, they have only one \DoF because both the frequency and amplitude of the vibration are coupled to the speed of the rotation, \eg low (high) frequencies output at low (high) amplitudes, as shown on \figref{precisionmicrodrives_erm_performances}.
\item A \LRA consists of a coil that creates a magnetic field from an \AC to oscillate a magnet attached to a spring, as an audio loudspeaker (see \figref{precisionmicrodrives_lra}). They are more complex to control and a bit larger than \ERMs. Each \LRA is designed to vibrate with maximum amplitude at a given frequency, but won't vibrate efficiently at other frequencies, \ie their bandwidth is narrow, as shown on \figref{azadi2014vibrotactile}.
\item An \ERM is a \DC motor that rotates an off-center mass when a voltage or current is applied (\figref{precisionmicrodrives_erm}). \ERMs are easy to control, inexpensive and can be encapsulated in a few millimeters cylinder or coin form factor. However, they have only one \DoF because both the frequency and amplitude of the vibration are coupled to the speed of the rotation, \eg low (high) frequencies output at low (high) amplitudes, as shown on \figref{precisionmicrodrives_erm_performances}.
\item A \LRA consists of a coil that creates a magnetic field from an \AC to oscillate a magnet attached to a spring, as an audio loudspeaker (\figref{precisionmicrodrives_lra}). They are more complex to control and a bit larger than \ERMs. Each \LRA is designed to vibrate with maximum amplitude at a given frequency, but won't vibrate efficiently at other frequencies, \ie their bandwidth is narrow, as shown on \figref{azadi2014vibrotactile}.
\item A \VCA is a \LRA but capable of generating vibration at two \DoF, with an independent control of the frequency and amplitude of the vibration on a wide bandwidth. They are larger in size than \ERMs and \LRAs, but can generate more complex renderings.
\item Piezoelectric actuators deform a solid material when a voltage is applied. They are very small and thin, and allow two \DoFs of amplitude and frequency control. However, they require high voltages to operate thus limiting their use in wearable devices.
\end{itemize}
@@ -169,8 +169,8 @@ Therefore, the visual rendering of a touched object can also greatly influence t
\textcite{bhatia2024augmenting} categorize the tactile augmentations of real objects into three types: direct touch, touch-through, and tool mediated.
In direct touch, the haptic device does not cover the interior of the hand to not impair the user to interact with the \RE.
We are interested in direct touch augmentations with wearable haptic devices (see \secref{wearable_haptic_devices}), as their integration with \AR is particularly promising for direct hand interaction with visuo-haptic augmentations.
We also focus tactile augmentations stimulating the mechanoreceptors of the skin (see \secref{haptic_sense}), thus excluding temperature perception, as they are the most common existing haptic interfaces.
We are interested in direct touch augmentations with wearable haptic devices (\secref{wearable_haptic_devices}), as their integration with \AR is particularly promising for direct hand interaction with visuo-haptic augmentations.
We also focus tactile augmentations stimulating the mechanoreceptors of the skin (\secref{haptic_sense}), thus excluding temperature perception, as they are the most common existing haptic interfaces.
% \cite{bhatia2024augmenting}. Types of interfaces : direct touch, through touch, through tool. Focus on direct touch, but when no rendering done,
% \cite{klatzky2003feeling} : rendering roughness, friction, deformation, temperatures