To English
This commit is contained in:
@@ -57,7 +57,7 @@ Moreover, as detailed in \secref{object_properties}, cutaneous sensations are ne
|
||||
\label{wearable_haptic_devices}
|
||||
|
||||
We present an overview of wearable haptic devices for the hand, following the categories of \textcite{pacchierotti2017wearable}.
|
||||
The rendering of a haptic device is indeed determined by the nature of the actuators employed, which form the interface between the haptic system and the user's skin, and therefore the types of mechanical stimuli they can generate.
|
||||
The rendering of a haptic device is indeed determined by the nature of the actuators employed, which form the interface between the haptic system and the user's skin, and therefore the types of mechanical stimuli they can supply.
|
||||
Several actuators are often combined in a haptic device to obtain richer haptic feedback.
|
||||
|
||||
\subsubsection{Moving Platforms}
|
||||
@@ -79,7 +79,6 @@ Pneumatic systems use a fluid such as air or water to inflate membranes under th
|
||||
Multiple membranes are often used in a grid to simulate edges and textures, as in the \figref{ujitoko2020development}~\cite{ujitoko2020development}.
|
||||
Although these two types of effector can be considered wearable, their actuation requires a high level of mechanical and electronic complexity that makes the system as a whole not portable.
|
||||
|
||||
|
||||
\begin{subfigs}{normal_actuators}{
|
||||
Normal indentation actuators for the fingertip.
|
||||
}[
|
||||
@@ -98,17 +97,17 @@ Although these two types of effector can be considered wearable, their actuation
|
||||
\subsubsection{Tangential Motion Actuators}
|
||||
\label{tangential_actuators}
|
||||
|
||||
De conception similaire aux plateformes mobiles, les actuateurs qui fournissent des mouvements tangentiels activent un pion rigide ou une surface sous le doigt et génèrent de sensations de cisaillement de la peau.
|
||||
Une structure de bras activées par des moteurs déplacent ainsi l'effecteur en contact avec la peau dans plusieurs directions sur 2 \DoFs parallèlement à la peau, \eg in \figref{leonardis2015wearable}~\cite{leonardis2015wearable}.
|
||||
Certains actuateurs sont capables de rendre à la fois des mouvements normaux et tangentiels sur 3 \DoFs sur la peau ainsi qu'établir et cesser le contact avec le doigt, \eg in \figref{schorr2017fingertip}~\cite{schorr2017fingertip}.
|
||||
Similar in design to the mobile platforms, the tangential motion actuators activate a rigid pin or surface in contact with the fingertip under the finger to create shearing sensation on the skin.
|
||||
An articulated and motorized arm structure moves the effector in multiple directions over 2 \DoFs parallel to the skin, \eg in \figref{leonardis2015wearable}~\cite{leonardis2015wearable}.
|
||||
Some actuators are capable of both normal and tangential motion over 3 \DoFs on the skin and can also make or break contact with the finger, \eg in \figref{schorr2017fingertip}~\cite{schorr2017fingertip}.
|
||||
|
||||
\subsubsection{Compression Belts}
|
||||
\label{belt_actuators}
|
||||
|
||||
Une approche alternative mécaniquement plus simple est de placer une ceinture sur le dessous du doigt et de l'activer sur 2 \DoFs par deux moteurs placés sur le dessus du doigt~\cite{minamizawa2007gravity}.
|
||||
En tournant dans des directions opposées, les moteurs raccourcissent la ceinture qui génère une sensation de pression sur le doigt.
|
||||
À l'inverse, en tournant simultanément dans la même direction, la ceinture tire la peau du doigt dans une sensation de cisaillement.
|
||||
La simplicité de cette approche permet de placer la ceinture ailleurs sur la main, laissant libre le bout du doigt pour interagir avec le \RE, \eg le hRing sur la phalange proximale de \textcite{pacchierotti2016hring} (voir \figref{pezent2019tasbi}) ou Tasbi sur le poignet de \textcite{pezent2019tasbi} (voir \figref{pezent2019tasbi}).
|
||||
A simpler alternative approach is to place a belt under the finger, and to actuate it over 2 \DoFs by two motors placed on top of the finger~\cite{minamizawa2007gravity}.
|
||||
By turning in opposite directions, the motors shorten the belt and create a sensation of pressure.
|
||||
Conversely, by turning simultaneously in the same direction, the belt pulls on the skin, creating a shearing sensation.
|
||||
The simplicity of this approach allows the belt to be placed anywhere on the hand, leaving the fingertip free to interact with the \RE, \eg the hRing on the proximal phalanx in \figref{pezent2019tasbi}~\cite{pacchierotti2016hring} or Tasbi on the wrist in \figref{pezent2019tasbi}~\cite{pezent2019tasbi}.
|
||||
|
||||
\begin{subfigs}{tangential_belts}{Tangential motion actuators and compression belts. }[
|
||||
\item A skin strech actuator for the fingertip~\cite{leonardis2015wearable}.
|
||||
@@ -139,7 +138,6 @@ Several types of vibrotactile actuators are used in haptics, with different trad
|
||||
\item Piezoelectric actuators deform a solid material when a voltage is applied. They are very small and thin, and allow two \DoFs of amplitude and frequency control. However, they require high voltages to operate thus limiting their use in wearable devices.
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\begin{subfigs}{vibrotactile_actuators}{Diagrams of vibrotactile acuators. }[
|
||||
\item Diagram of a cylindrical encapsulated \ERM. From Precision Microdrives.~\footnotemark
|
||||
\item Diagram of a \LRA. From Precision Microdrives.~\footnotemarkrepeat
|
||||
|
||||
Reference in New Issue
Block a user