Typo intro

This commit is contained in:
2024-09-07 23:04:37 +02:00
parent 94eca14055
commit 311baca2dc

View File

@@ -27,16 +27,6 @@ This is due to the many sensory receptors distributed throughout our hands and b
% %
This rich and complex variety of actions and sensations makes it particularly difficult to artificially recreate capabilities of touch, for example in virtual or remote operating environments~\cite{culbertson2018haptics}. This rich and complex variety of actions and sensations makes it particularly difficult to artificially recreate capabilities of touch, for example in virtual or remote operating environments~\cite{culbertson2018haptics}.
%Nous regardons et touchons simultanément les objets de la vie quotidienne qui nous entourent, sans même y penser.
%Beaucoup de propriétés de ces objets peuvent être perçues de façon complémentaire par la vision comme par le toucher, comme la forme, la taille ou la texture.
%Mais la vision précède souvent le toucher, et nous permet de prédire les sensations tactiles que nous allons ressentir en touchant l'objet, voire prédire des propriétés tactiles que nous ne pouvons pas voir, comme le poids ou la température.
%Ainsi, les sensations visuelles et tactiles sont souvent liées et complémentaires, voire redondantes ou contradictoires.
%C'est pourquoi nous voulons parfois toucher un objet pour vérifier une de ses propriété que nous avons vue, comme sa texture, et confronter nos sensations visuelles et tactiles.
%Nous utilisons alors ces deux modalités sensorielles, ainsi que le mouvement de notre main, pour construire une perception unifiée de l'objet que nous explorons et manipulons.
%Le sens du toucher permet ainsi à la fois de percevoir et d'interagir avec notre environnement.
%Également appelé sens haptique, il peut être décomposé en deux sous-modalités: les sensations kinésthétique (ou proprioception), qui sont les forces senties par les muscles et les tendons, et les sensations cutanées (ou tactiles), qui sont les pressions, étirements, vibrations et températures ressenties par la peau.
%Cette riche et complexe diversité de sensations rend particulièrement difficile de le recréer artificiellement, par exemple dans des environnements virtuels ou de téléopération.
\subsectionstarbookmark{Wearable Haptics Promise Everyday Use} \subsectionstarbookmark{Wearable Haptics Promise Everyday Use}
@@ -100,7 +90,7 @@ It is technically and conceptually closely related to \VR, which replaces the \R
% %
\AR and \VR can be placed on a \RV continuum, as proposed by \textcite{milgram1994taxonomy} and illustrated in \figref{rv-continuum}\footnote{On the \RV continuum of \textcite{milgram1994taxonomy}, augmented virtuality is also considered, as the incorporation of real objects to a \VE, and is placed between \AR and \VR. For simplicity, we only consider \AR and \VR in this thesis.}. \AR and \VR can be placed on a \RV continuum, as proposed by \textcite{milgram1994taxonomy} and illustrated in \figref{rv-continuum}\footnote{On the \RV continuum of \textcite{milgram1994taxonomy}, augmented virtuality is also considered, as the incorporation of real objects to a \VE, and is placed between \AR and \VR. For simplicity, we only consider \AR and \VR in this thesis.}.
% %
It describes the degree of \RV of the environment along an axis, with one end being the \RE and the other end being a pure \VE, \ie indistinguishable from the real world (such as \emph{The Matrix} movies or the \emph{Holodeck} in the \emph{Star Trek} series). It describes the degree of \RV of the environment along an axis, with one end being the \RE and the other end being a pure \VE, \ie indistinguishable from the real world (such as \emph{The Matrix} movies).
% %
Between these two extremes lies \MR, which comprises \AR and \VR as different levels of mixing real and virtual environments~\autocite{skarbez2021revisiting}. Between these two extremes lies \MR, which comprises \AR and \VR as different levels of mixing real and virtual environments~\autocite{skarbez2021revisiting}.
% %
@@ -130,7 +120,7 @@ In particular, it has been implemented by enhancing the haptic perception of tan
% %
\figref{salazar2020altering} shows an example of modifying the perceived stiffness of a tangible object in \VR using simultaneous pressure feedback on the finger (left middle cell in \figref{visuo-haptic-rv-continuum3}). \figref{salazar2020altering} shows an example of modifying the perceived stiffness of a tangible object in \VR using simultaneous pressure feedback on the finger (left middle cell in \figref{visuo-haptic-rv-continuum3}).
% %
\figref{bau2012revel} shows another example of \vh-\AR rendering of texture when running the finger on a tangible surface (middle cell in the two axes in \figref{visuo-haptic-rv-continuum3}). \figref{bau2012revel} shows another example of \vh-\AR rendering of virtual texture when running the finger on a tangible surface (middle cell in the two axes in \figref{visuo-haptic-rv-continuum3}).
Current \v-\AR systems often lack haptic feedback, creating a deceptive and incomplete user experience when reaching the \VE with the hand. Current \v-\AR systems often lack haptic feedback, creating a deceptive and incomplete user experience when reaching the \VE with the hand.
% %
@@ -330,7 +320,7 @@ Our third objective is to evaluate the perception of simultaneous and co-localiz
In immersive and wearable \vh-\AR, the hand is free to touch and interact seamlessly with real, augmented, and virtual objects, and one can expect natural and direct contact and manipulation of \VOs with the bare hand. In immersive and wearable \vh-\AR, the hand is free to touch and interact seamlessly with real, augmented, and virtual objects, and one can expect natural and direct contact and manipulation of \VOs with the bare hand.
% %
However, the intangibility of the vVE, the many display limitations of current \v-\AR systems and \WH devices, and the potential discrepancies between these two types of feedback can make the manipulation of \VOs particularly challenging. However, the intangibility of the \v-\VE, the many display limitations of current \v-\AR systems and \WH devices, and the potential discrepancies between these two types of feedback can make the manipulation of \VOs particularly challenging.
%However, the intangibility of the virtual visual environment, the lack of kinesthetic feedback of \WHs, the visual rendering limitations of current \AR systems, as well as the spatial and temporal discrepancies between the real environment, the visual feedback, and the haptic feedback, can make the interaction with \VOs with bare hands particularly challenging. %However, the intangibility of the virtual visual environment, the lack of kinesthetic feedback of \WHs, the visual rendering limitations of current \AR systems, as well as the spatial and temporal discrepancies between the real environment, the visual feedback, and the haptic feedback, can make the interaction with \VOs with bare hands particularly challenging.
% %
Still two types of sensory feedback are known to improve such direct \VO manipulation, but they have not been studied in combination in immersive \v-\AE: visual rendering of the hand~\autocite{piumsomboon2014graspshell,prachyabrued2014visual} and contact rendering with \WHs~\autocite{lopes2018adding,teng2021touch}. Still two types of sensory feedback are known to improve such direct \VO manipulation, but they have not been studied in combination in immersive \v-\AE: visual rendering of the hand~\autocite{piumsomboon2014graspshell,prachyabrued2014visual} and contact rendering with \WHs~\autocite{lopes2018adding,teng2021touch}.